
Natural convection in an inclined enclosure 
containing internal energy sources and 
cooled from below 
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Natural convection in an inclined enclosure cooled from below and containing 
internally heated fluid has been investigated using a finite difference calculation 
procedure. Results have been obtained for Rayleigh number values up to 10 e and 
for incl ination angles of 30 and 60 °. For internal Rayleigh numbers that are much 
larger than the external Rayleigh number, the f low rises in the interior and moves 
down both the hot and cold walls. On the other hand, if the external Rayleigh 
number has a larger magnitude, the f low moves upwards along the hot surface and 
downwards along the cold surface. For the latter situation, the inner core is mult i- 
cellular in nature at large external Rayleigh numbers. The average heat f lux ratio 
along the cold surface (convective heat f lux/corresponding conduct ion heat flux) 
increases with increasing external Rayleigh number and decreasing internal 
Rayleigh number. Along the hot surface, the behaviour of the average heat f lux 
ratio is non-monotonic  in nature. The heat f lux ratio along both surfaces is 
observed to be strongly dependent on the inclination angle at high external 
Rayleigh numbers. A maximum in the local heat f lux ratio along the cold surface is 
obtained in the vicini ty ofx/L = 1 where hot fluid, either from the interior or directly 
from the opposite hot wall, meets the surface. Along the hot wall, a maximum in 
the heat f lux ratio is obtained nearx/l = 1 or nearx/L = 0 depending on whether the 
f low is downwards or upwards along the hot surface 
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Natural  convection in both externally and internally 
heated enclosures has been extensively studied in the past. 
The published literature dealing with externally heated 
enclosures has been reviewed by Ostrach 1 and more 
recently by Catton 2. The literature related to internally 
heated enclosures has been compiled recently 3. 

Natural  convection in an enclosure subjected to 
simultaneous internal heating and heating or cooling 
from below has received rather limited attention 4-1°, 
with the horizontal layer being the only geometry 
considered. Baker, Faw and Kulacki 4 and Cheung 5 have 
each examined the available data for both internally 
heated layers with equal upper and lower boundary 
temperatures and internally heated layer with insulated 
lower boundary, and have presented correlations for 
internally heated layers with unequal boundary 
temperatures. Kikuchi, Kawasaki  and Shiyoma 6 and 
Boon-Long, Lester and Faw7 have investigated 
experimentally the heat transfer behaviour in a horizontal 
layer with simultaneous internal and external heating. 
Suo-Anttilla and Catton 8 have used the Landau method 
to determine the heat transfer in a horizontal, internally 
heated layer which is cooled from below and have 
conducted an experimental study of the same problem 9. 
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As mentioned earlier, the published literature is 
primarily restricted to a horizontal layer. Recently, 
Acharya and Goldstein 1° have investigated the natural 
convection heat transfer in an inclined square box heated 
internally and from below. There is, however, no reported 
information on the heat transfer behaviour in an 
internally heated inclined enclosure which is cooled from 
below. Such a situation is analysed here. 

A limiting case of the problem considered here is 
natural convection in an inclined enclosure cooled from 
below (with no internal energy sources). Solutions have 
been obtained for this case and compared with the results 
available in the literature ~ ~ - 1 7  

Governing equations 
In this study a Boussinesq fluid is considered. The natural 
convection motion is assumed to be steady, laminar and 
two-dimensional with the axes of the flow pattern parallel 
to the third dimension. For  inclined enclosures cooled 
from below and for vertical enclosures, the two 
dimensional flow assumption has been established 
experimentally 13,18. 

The physical situation to be considered is shown in 
Fig 1. The governing partial differential equations are the 
conservation of mass, momentum and energy which are 
non-dimensionalized using the following quantities: 
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Fig I Schematic of the physical situation 

X = x /L  Y= y/L, (1 a) 

U = u/(v/L) V= v/(v/L), (lb) 

P = p * / p ( v / L )  2 where p* = p + pgx sin 0 + PgY cos 0 (1 c) 

49 = ( T -  To)/(T h - Tc) where To = (Th + T~)/2 (ld) 

The resulting equations are: 

#U/OX + OV/OY= 0 (2) 

UOU/OX + VOU/OY= - OP/c3X + ~2 U/{~X 2 ..~ 

0 2 U/~ Y~ + RaE49 sin O/Pr (3) 

UOV/OX + VOV/c~ Y= - ~P/# Y+ 0 2 V/OX 2 + a 2 V/O y2 + 

RaE49 cos O/Pr (4) 

U~49/~X + VO49/#Y= (1/Pr)(c3249/~3X 2 + 0249/0Y 2) + 

Ral/(RaE. Pr) (5) 

All four boundaries are considered to be rigid (u= v=0)  
and the side walls are assumed to be adiabatic 
(t~49/0X=0). The lower wall (y/L=O) is maintained at a 
temperature T~ (ie 49 = - 0.5) while the upper wall (y/L = 1) 
is held at a temperature T h (ie 49 =0.5). Here T~ is assumed 
to be smaller than T h. 

It can be seen that there are five governing 
parameters in the problem: the external Rayleigh number 
RaE, the internal Rayleigh number Ra~, the angle of 

inclination 0, the aspect ratio (H/L) and the Prandtl 
number Pr. Results are presented for Ra E and Ra~ values 
of up t o  l 0  6 and inclination angles of 90I", 60 and 30 
degrees. Pr is assigned a constant value of 0.7 and the 
aspect ratio is assumed to be unity. 

Note that the use of Boussinesq assumption 
implies that compressibility effects are small, which is 
justified 19 for (Th- T~)/T~ < 0.2. Also, since the influence of 
radiation and thermophysical property variations are not 
considered, the results reported in the paper are limited to 
small overall temperature differences. 

Solution procedure 

The governing partial differential equations are solved by 
using a control-volume based finite difference procedure 
called SIMPLER (Semi Implicit _Method for _Pressure 
Linked _Equations _Revised). This method has been 
accorded a book length description by Patankar 2° and, 
therefore, will not be described here. 

A 32 x 32 grid is employed in all the calculations. 
The distribution of the nodal points is carefully tailored so 
that the solutions obtained are reasonably accurate. As a 
first step, the accuracy of the computed results was 
verified by determining whether overall energy 
conservation is satisfied. In dimensionless form, this 
requirement can be expressed as: 

1 

f ( -  t3~/~Y)y_o dx + Ral/RaE 

R = x = 0  - 1 . 0  
1 

f (-- (~/63Y)y= l dx 
x=o 

(6) 

For all cases studied, R differs from 1.0 in only the third or 
fourth significant digit after the decimal point. 

f Results for 0= 900 are taken from earlier work 1° 

Notation 

9 
H 
L 
p, p*, P 

Pr 
Q 
q= 

qc 

qrst, qr~ 

qr,c, qr,c 

R 

RaE 
Ral 

Gravitational acceleration 
Height of enclosure 
Width of enclosure 
Thermodynamic, modified and dimension- 
less pressures 
Prandtl number 
Uniform volumetric heat generation rate 
Convective heat flux at the hot or cold 
surface 
Conduction heat flux at the hot or cold 
surface, - k(Th - T~)/L T QL/2 
Heat flux ratio (q]q¢) at the hot surface and 
the corresponding average value 
Heat flux ratio (qJqc) at the cold surface and 
the corresponding average value 
Ratio defined in Eq (6) 
External Rayleigh number, gfl(T h - T~)L3/w 
Internal Rayleigh number, gBQLS/r~tk 

T 
T~,T~ 
To 
u, U 

v , V  

x , X  

y , Y  

0 
V 

P 
49 

q, 

Temperature 
Temperature of the hot and cold surfaces 
Mean temperature, (Th + Tj/2 
Dimensional and dimensionless velocities 
in the x-direction 
Dimensional and dimensionless velocities 
in the y-direction 
Dimensional and dimensionless coordinate 
along hot and cold wall 
Dimensional and dimensionless coordinate 
along adiabatic walls 
Thermal diffusivity 
Thermal expansion coefficient 
Angle of inclination 
Kinematic viscosity 
Density 
Dimensionless temperature, 
( T -  To)/(T h -- To) 
Dimensionless stream function 
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Fig 2 Comparison of predictions (of average heat flux 
ratio) with published results for an inclined enclosure cooled 

from below 

Furthermore, the accuracy of the computed results in the 
absence of internal heating is demonstrated by comparing 
the computed results with those published in the literature 
(Fig 2). These predictions agree well with predictions and 
measurements published in the literature. The adequacy 
of the grid, in the presence of internal heating, is also 
verified by comparing the results computed with a 32 x 32 
grid with those obtained using a 6 4 x 6 4  grid. This 
comparison, for the x-component of velocity along the 
centre line and the local Nusselt number along the hot 
surface is shown in Fig 3. Agreement is good and the other 
quantities show similar agreement. For  example, the 
maximum x-velocity for the two grid sizes agrees to within 
1.6%, the maximum temperature to within 0.6% and the 
average Nusselt number along the hot surface agrees to 
the fourth significant digit beyond the decimal point. 

Results and discussion 

The presentation of the results will begin with the 
streamline and isotherm patterns in the enclosure. 
Representative distributions of the average and local heat 
flux ratio will then be presented. 

Streamline and isotherm pattern 

The stream function ~ is calculated from the velocity field 
by evaluating the integral: 

Y 

O= f U d Y (7) 
0 

along constant X lines with ~ = 0 at X = Y= 0. 
For  0=  60 °, the streamline contours are shown in 

Figs 4-7. Fig 4 corresponds to Ra~ and Ra E values of 0 and 
10 6 respectively and indicates the presence of a base flow 

Natural convection in an inclined enclosure 

along the enclosure walls and secondary and tertiary 
eddies in the inner core. The base flow is expectedly 
upwards along the hot plate and downwards along the 
cold one. Both the secondary eddies have the same flow 
direction as the base flow (ie clockwise) while the tertiary 
eddy rotates in a direction opposite to the direction of the 
base flow. Both the streamline and isotherm contours 
reveal essential differences when compared with the 
corresponding contours for the bottom heated 
enclosure 1 o. In the bottom-heated situation, velocity and 
temperature boundary layers were obtained over the 
entire thermally active surface. Here large velocity and 
temperature gradients occur only along the leading region 
of the hot surface (ie close to x/L=O) and along the 
leading region of the cold surface (ie in the neighbourhood 
of x/L= 1). The magnitude of the gradients decreases 
rapidly in the flow direction. Furthermore, the flow 
velocities are smaller than the corresponding flow field 
velocities for the bottom-heated enclosure. This is 
expected since the bottom-heated configuration is more 
unstable than an enclosure heated from the top. 

If the internal Rayleish number is much larger 
than the external Rayleigh number, the flow pattern has a 
different nature. This is illustrated in Fig 5 for Ra~ = l05 
and RaE= 10 3. The fluid rises in the interior and moves 
down both the hot and cold surfaces. The region of highest 
temperature is between the hot and cold walls and, 
therefore, the heat flux along both these walls is directed 
from the fluid to the wall. In contrast, for the situation 
shown in Fig 4 (ie where Ra] =0  or where the effect of RaE 
is dominant), the maximum temperature occurs at the hot 
surface with the heat flux at the cold surface directed from 
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Fig 3 Comparison of local results for a 32 x 32 grid with 
the results for a 64 x 64 grid 
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Fig 4 Contour plots for an inclined Fig 5 Contour plots for an inclined Fig 6 Contour plots for an inclined 
(0=60 °) enclosure,  Ral=O, (0=60 °) enclosure, Rat=  105, (0=60 °) enclosure, Rat=  10 °, 
RaE=IO~: (top) streamline; (below) RaE=103: (top) streamline; (below) RaE=103: (top) streamline; (below) 
isotherm isotherm isotherm 

the fluid to the wall and at the hot surface from the wall to 
the fluid. 

At a constant RaE (smaller than Rat), if Rat is 
increased, say from 105 (Fig 5) to 106 (Fig 6), then the 
vigour of the downward flow is observed to increase over 
both the hot and cold surfaces. This is expected, since a 
higher value for Rat implies higher interior temperatures 
and therefore larger temperature gradients. If Ral is held 
fixed (at 106) and RaE increased from 103 to higher values, 
then, over a certain range of RaE the flow pattern 
undergoes a transition from that shown in Fig6 (for 
Rat= 106, RaE = 103) to a flow pattern similar to that 
shown in Fig 4 (for Rat =0,  RaE= 106). 

A transitional flow pattern is shown in Fig 7 (for 
Ral = 106 and RaE = 105). Compared to Fig 6, both the size 
and speed of the downward flow along the hot surface 
(counter-clockwise eddy) has decreased but the size of the 
downward flow along the cold surface (clockwise eddy) 
has increased. Note that the downward flow along the hot 
surface does not span the entire height of the enclosure, as 
it does when Ra~ is dominant, and therefore, along the hot 
surface the flow has both positive x velocities ( due to the 
clockwise eddy) and negative x velocities (due to the 
counter-clockwise eddy). For  a higher value of RaE, the 
counter-clockwise eddy is even smaller in size and 
eventually, at a sufficiently high value of Raz, the counter- 

clockwise eddy is completely absent and the flow is 
upwards along the heated wall and downwards along the 
cooled wall (as in Fig 4). 

The flow pattern at Rat=O and RaE= 106 for an 
enclosure inclined at 30 ° is shown in Fig 8. When this flow 
pattern is compared with the corresponding flow field for 
0 = 60 ° (Fig 4) it can be observed that both flow patterns 
consist of a base flow (in a clockwise direction) adjacent to 
the enclosure walls and two secondary eddies (also 
rotating in a clockwise direction) and a tertiary eddy 
(rotating in a counter-clockwise direction) in the inner 
core. For  0 = 60 °, however, the base flow occupies most of 
the enclosure cross-section while for 0 = 30 ° the base flow 
is confined only to the near-wall region and it is the 
secondary eddies which occupy most of the enclosure 
cross-section. Furthermore, the flow velocities are smaller 
at 0=30  ° than at 0=60  ° . This is expected since the 
buoyancy component  parallel to the hot and cold surface 
is smaller (by a factor of 1.73) when the enclosure is 
inclined at 30 ° than when it is inclined at 60 ° . 

The tertiary eddy obtained at the centre of the 
enclosure is due to the interaction of the secondary eddies. 
In Fig 8 it can be observed that the secondary eddies 
interact with the base flow (along the enclosure walls) and 
therefore, entrain the base flow along the region between 
the secondary eddies. The base flow entrained towards the 
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Fig 7 Contour plots for an inclined 
(0 = 60 °) enclosure, Rat = 104, 
RaE= I05 : (top)streamline," (below) 
isotherm 

Fig 8 Contour plots for an inclined 
(0 = 30 °) enclosure, R a / =  0, 
RaE=106 : (top)streamline; (below) 
isotherm 

Fig 9 Contour plots for an inclined 
(0 = 30 °) enclosure, Ral = 106, 
RaE =103 : (top)streamline; (below) 
isotherm 

centre of the enclosure by the secondary eddy moving 
down the cold surface, or by the secondary eddy moving 
up the hot surface, experiences a retarding shear force by 
the other secondary eddy. Therefore, the velocity of the 
entrained fluid continuously decreases along the direction 
of its motion and eventually its flow direction is reversed. 
The location of flow reversal is marked by the onset of 
tertiary motion. 

The isotherm pattern in Fig 8 indicates the absence 
of thermal boundary layers along the hot and cold surface. 
Thus, by comparing the flow and isotherm patterns (for 
Ra~=0) at 0 = 3 0  ° (Fig8), 0 = 6 0  ° (Fig4) and 0 = 9 0  ° 
(Ref 10), it may be concluded that the boundary layer 
behaviour at the hot and cold walls decreases as the 
inclination angle is decreased. 

As at 0 = 6 0  °, if the internal Rayleigh number is 
considerably larger than the external Rayleigh number  (eg 
Ra~ = 1 0  6, RaE = 103) then the flow pattern has a different 
nature, with fluid moving upwards in the interior of the 
enclosure and moving down both the hot and cold walls 
(Fig 9). In comparing Fig 9 (0 = 30 °) with Fig 6 (0 = 60°), it 
may be observed that the downward flow along the cold 
surface is weaker and the downward flow along the hot 
surface is stronger at 0=30  ° than at 0=60  ° . This is 
because the x-component  of buoyancy due to external 
heating opposes the flow due to internal heating moving 
down the hot surface and aids the flow due to internal 

heating moving down the cold surface. At 0 = 30 ° the x- 
component  of buoyancy due to external heating is smaller 
than the corresponding value at 0 = 6 0  ° . Therefore, the 
flow down the hot surface is stronger and the flow down 
the cold surface is weaker at 0 = 30 ° than at 0 = 60 °. 

With Ra~ fixed (at 106) ,  ifRaE is increased from 10 a 
(Fig 9) to 105 (Fig 10), the downward flow over the cold 
surface increases in size and becomes faster while the 
downward flow over the hot surface is reduced in size and 
becomes slower. This behaviour is once again linked to 
the fact that with increasing RaE values, the magnitude of 
the x-component  of buoyancy is increased and therefore 
aids the downward flow along the cold surface and 
opposes the downward flow along the hot surface. 

As mentioned earlier, if Ra~ is held fixed and RaE is 
increased (from a value smaller than Ra~) then, over a 
certain range of RaE values, the flow pattern changes from 
one where the flow moves downwards over both hot and 
cold surfaces to one where the flow moves upwards along 
the hot surface and downwards along the cold surface. 
This transition in flow pattern is obtained at a lower value 
of RaE when the inclination angle of the enclosure is larger 
(ie 60°). To substantiate this conclusion, Fig 7 (0 = 60 °, 
Ral --- 10 ° and RaE = 105) is compared with Fig 10 (0 = 30 °, 
Rai=106 and RaE=105). In Fig l0 (0=30 ° ) the flow 
moving down the cold wall occupies less than half the 
enclosure cross-section and is weaker than the flow 
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Fig 10 Contour plots for an inclined (0=30 °) enclosure, 
Rat = 106, Rae = 105: (top)streamline; (below) isotherm 

moving down the hot wall. In Fig 7 (0=60 °) the flow 
moving down the cold wall occupies most of the enclosure 
cross-section and is considerably stronger than the flow 
moving down the hot wall. Therefore, the transition in the 
flow pattern has progressed substantially further with the 
enclosure inclined at 60 ° than with the enclosure inclined 
at 30 ° . 

Average heat flux ratios 

To describe the heat transfer behaviour in the enclosure, a 
heat flux ratio is defined for both the cold ( q J  and the hot 
(q r.h) surfaces: 

qr,c = (qJq~)y = 0, (8a) 

qr~ = (qJq~)y = v (8 b) 

where q~ is the surface heat flux (in the positive y direction) 
and q~ is the corresponding conduction heat flux (at the 
same value of Q and (Th-T~)). When expressed in 
dimensionless terms, Eq (8) takes the form: 

q~,~ = (-- &b/OY)r=o/(1 + 0.5RaJRaE), (9a) 

qr~ = (-- Odp / O Y)y= ~/(1 -- 0.5 RaJ RaE). (9b) 

The average heat flux ratios qr,~ and 4~ are obtained by 
averaging the local heat flux ratios q~,c and q~. 

The average heat flux ratio along the cold surface 
( 4 J  for an inclination of 60 ° (Fig 1 l) increases 

monotonically with increasing Ra E because the strength 
of the downward flow (and therefore the surface heat flux) 
along the cold surface increases with increasing RaE. 

At a fixed RaE, the magnitude of qr,c is observed to 
decrease with increasing Ral. This implies that for a 
certain increase in the value of Ra~ (ie the strength of the 
internal heat sources), the increase in the average value of 
the convective heat transfer at the cold surface (ie qs at 
y =0) is smaller than the corresponding increase of the 
conduction heat flux. 

The convective heat transfer at the cold surface is 
dictated by a number  of interacting effects. To explain 
these effects the situation for which Ra~ is much greater 
than Ra E is first considered. In this case, the flow is 
downwards over both the hot and cold surfaces. Hot  
interior fluid is carried in a clockwise direction to the cold 
surface resulting in higher heat transfer rates, compared to 
the conduction value, in the vicinity of the leading edge of 
cold surface (x/L= 1). As the fluid moves over the cold 
surface, its temperature decreases and, therefore, both the 
temperature gradient and the surface heat flux decrease. 
Moreover, the hot interior fluid is cooled by the 
downward flow along the hot surface and therefore the 
temperature gradient at the cold surface decreases. The 
cumulative influence of these effects decides the value of 
the surface heat flux. For Ral values of 104, 105 and 10 6, 
there is a range of RaE values ( < Ral) for which the average 
convection heat transfer at the cold surface is smaller than 
the corresponding conduction value (ie ¢]~,c < 1). 

When RaE > Ra~, the flow moves up the hot wall 
and down the cold wall. As RaE is increased, the influence 
of internal heating on the heat transfer at the cold surface 
is reduced. Therefore, with increasing RaE, the t]r,c values 
approach those predicted for zero Ral. 

The influence of inclination angle on the average 
heat flux ratio along the cold surface is shown in Fig 12. 
For  Ra~=O and 105, results for a vertical enclosure 
(0=90 °) have been obtained from earlier work l°. 

For  all three Ra~ values (0, 10 5 and 106), (~r.¢ has a 
higher value at a larger angle of inclination. Furthermore, 

4 e = 6 0  ° / /  
/ R o ~ = O .  / . . . . ~ / "  / 5 /  _ / 

zr " / . .--z~-"" .. ~ Ro~o,o e . /  

03 I J 
10 4 10 5 10 6 

Rct E 

Fig 11 Average heat flux ratio along the cold surface for 
an inclination of 60 ° 
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Fig I2 Dependence of the average heatflux ratio along the 
cold surface on inclination angle 

the influence of inclination angle increases as Ra, 
increases. At Ra,= lo5 and Ra,= 106, qrr for H=90” is 
approximately 1.65 times the corresponding value for 
0=60” and 5.5 times the predicted value for H= 30”. For 
smaller Ra, (IO3 and 104) the differences in the predicted 
irr values are substantially smaller. 

To explain these trends, note that for large Ra, 
values the flow is upwards along the hot wall and 
downwards along the cold wall. As the enclosure is 
inclined to-wards the horizontal, the flow field becomes 
increasingly thermally stratified resulting in smaller 
velocities and lower heat transfer. For Ra, less than Ra,, 
the flow is downwards along both the hot and cold 
surfaces with the flow along the cold surface becoming 
faster with increasing inclination from the horizontal. 
Therefore, as in the case of large Ra,, a higher value of 41.C 
is obtained at a larger inclination angle. 

Turning to the distribution of the average heat flux 
ratio along the hot surface (Fig 13), from Eq (9b) it can be 
seen that qr,h becomes singular at Ra,=O.SRa,. At this 
value of Ra,, the conduction heat flux qC at the hot surface 
is zero since the contribution (to qJ due to external 
heating exactly cancels the contribution due to the 
internal energy sources. In the neighbourhood of this 
singularity the behaviour of qr,h is expected to be quite 
irregular with its magnitude increasing rapidly to infinity 
(as Ra, tends to the singularity value of 0.5RaJ and then 
decreasing rapidly from infinity (as the singularity is 
crossed). Therefore, since the results have been obtained 
only for Ra, values of 103, 104, lo5 and lo6 (and not in the 
immediate vicinity of the singularity), the jr,, curve in the 
neighbourhood of the singularity has been’intentionally 
omitted. It should be noted that the Ra, range in which 
the flow transition discussed above occurs, and in which 
the convective flux at the hot surface increases from a 
negative value to zero and then to a positive value, is 
approximately the same as the Ra, range in which qrh 
behaviour is irregular and in which conduction heat flux 
at the hot surface increases from a negative value to zero 
and then to a positive value. 

Fig 13 shows that for Ra, =0 (and 103) &, 
increases with Ra,. As for q,,C, this behaviour is explained 
by noting that the strength of the flow moving upwards 
along the hot surface increases with increasing Ra,. For 
Ra, G Ra,, the flow is downwards along both the hot and 
cold surface. For such situations &, is smaller than the 
corresponding predictions for Ra, =0 and even drops 
below the conduction value of 1. As for the cold surface, 
the magnitude of &, is an outcome of a number of 
interacting effects. High heat transfer rates are obtained 
when the internally heated fluid rises in the interior and 
encounters the leading edge (x/L= 1) of the hot surface. 
The flow is cooled as it moves down the hot surface and 
therefore, the heat transfer rate decreases. Furthermore, 
the interior flow is cooled by the cold wall and therefore 
results in lower temperature gradients at the hot surface. 

For Ra, greater than Ra,, the transition in flow 
pattern (from flow down the hot surface to flow up the hot 
surface) is complete and the strength of the upward flow 
along the hot surface increases as Ra, is increased. 
Therefore, the qrh values increase and as Ra, becomes 
sufficiently large (and the influence of Ra, decreases) the 
qrh curve approaches that predicted for zero Ra,. 

The influence of inclination angle on the jr,h 
distribution is shown in Fig 14. Results are presented only 
for Ra, = 10’. The results for Ra, = lo6 show similar trends 
and the results for Ra, =0 are identical to those plotted in 
Fig 12. 

Note that the inclination angle has a strong 
influence at large Ra,, but only a weak influence at small 
Ra,. At large Ra,, the flow is upwards along the hot 
surface and, as mentioned earlier, becomes faster at a 
higher inclination angle. Thus, higher values of qrh are 
obtained at a larger inclination angle. This trend is 
completely reversed at the smaller Ra, values. For these 
situations, the flow is downwards over the hot surface. As 
the inclination angle becomes larger, the strength of the 
downward flow over the cold surface increases producing 
greater cooling in the interior. However, the strength of 
the downward flow over the hot surface decreases. The net 
effect is lower interior temperatures and smaller 
temperature gradients at the hot surface. Therefore, for 
small Ra, values, qrh decreases with increasing angle. 

Fig 15 plots the local heat flux ratio along the hot 
and cold surfaces for two different sets of Rayleigh 

9- 

8- 

7- pq 

6t Rar = I05 I I 

Fig 13 Average heat&x ratio along the hot surfacefor an 
inclination of 60” 
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Fig 15 local heat flux ratio along the hot and cold surfaces 

numbers and for all three inclination angles. The inset of 
Fig 15 plots the distribution of qr.c for Ra~=O and 
RaE = 105. In the neighbourhood of x/L = 1, heated fluid 
from the hot surface of the enclosure meets the lower cold 
wall and thus large qr.c values are obtained. As the fluid 
moves down the cold surface, its temperature decreases 
and therefore, both the temperature gradient and qr.c 
decrease. As explained before, the q~.c value is higher at 90 ° 
than at 60 ° and 30 ° . This discrepancy is largest in near 
x/L--1 (where the wall to adjacent fluid temperature 
difference is large) and the smallest near x/L = 0 (where the 
wall to adjacent fluid temperature difference is small). 
Thus, the decrease in qr.c value as the flow moves down the 
cold surface is greater for a vertical enclosure than it is for 
an inclined enclosure. 

The distribution of qr.h ( for  R a t = 0  ) is identical to 
that shown for qr,c with the x/L along the lower abscissa 
replaced by (1-x /L) .  

For  Ra] = 105 and RaE= 104, the distribution for 
qr~ is keyed to the abscissa on the top of the plot while that 
for qr,c is keyed to the abscissa along the bottom of the 
plot. As expected, for both the hot and cold surfaces, the 
maximum heat flux ratio is obtained in the neighbour- 
hood of the location where the hot interior fluid meets the 
thermally active surfaces, ie near x/L = 1. As the fluid flows 
down (from x/L= 1 towards x/L=O) the hot (or cold) 
surface, its temperature decreases thus resulting in smaller 
temperature gradients and heat flux ratios, qr.h decreases 
but qr.~ increases with increasing angle as a result of the 
decreasing strength of the downward flow along the hot 
surface and the increasing strength of the downward flow 
along the cold surface with increasing angle. 

In general, the angle of inclination has a 
considerably greater influence on the overall heat transfer 
rate when the enclosure is cooled from the bottom than 
when it is heated from the bottom ~° 

Concluding remarks 

Natural convection in an inclined enclosure cooled from 
below and containing internal energy sources has been 
investigated by a finite-difference procedure. Results 
indicate that for RaE > Rah the flow is upwards along the 
hot wall and downwards along the cold wall. For  values of 
RaE which are considerably smaller than Rat, the flow 

rises up in the interior and moves down both the hot and 
cold walls. For  intermediate Ra E values 
(O.1Ra~<RaE<RaO transitional flow patterns are 
observed. The average heat flux ratio along the cold 
surface increases with increasing RaE and decreasing 
Ray The average heat flux ratio along the hot surface 
exhibits non-monotonic behaviour for non-zero Ra~ 
with large variations in the RaE range associated with 
the transition in the flow pattern. At high RaE values, 
the inclination angle has a strong influence on the 
magnitude of the heat flux ratio. The maximum heat 
flux ratio along the cold surface occurs near x/L= 1 
while along the hot surface it occurs near x/L--0 if the 
flow is upwards along the hot surface and near x/L= 1 
if the flow is downwards along the hot surface. 
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888K REVOIEW 

Perturbation Methods in Heat Transfer 
A. Aziz and T. Y. Na 

The authors have produced a volume that they assert is 
both 'a textbook and an up-to-date reference' on 
perturbation methods applied to heat transfer problems. 
The book was published in 1984 and the most recent 
reference cited is 1982, so the last claim may be justified. I 
am less certain of the value of the work as a textbook, but 
it may be a useful reference in some cases. The subject 
matter of the book places it beyond most undergraduates 
and all but a few beginning graduate students. A 
background in heat transfer and fluid mechanics is 
definitely needed. 

Following an introductory chapter, the authors 
take up, in turn, regular and singular perturbation 
expansions, the method of strained coordinates, the 
method of matched asymptotic expansions, and 
techniques for improving the range of convergence of 
perturbation series. A bibliography of heat transfer 
literature in which perturbation techniques have been 
used completes the book. 

As a rule, the mathematical analysis for a 
particular topic is introduced through an example with no 
particular physical significance. This is followed by 
several analyses of heat transfer problems that have been 
treated in the literature. In most instances, perturbation 
parameters are introduced without either mathematical 
or physical explanation and the reader is left to speculate 
on how they came about. Frequently, the problem 
statements are incomplete. Only rarely do the authors 
provide a physical interpretation of the parameters or the 
results. Occasionally, the interested reader will be forced 

to consult an original reference for this interpretation, for 
a clear problem statement and to check for errors that 
have been introduced. Heat transfer is a field where 
physical explanations can be used to enrich and explain a 
mathematical analysis. I am disappointed that the 
authors chose not to do so. 

The text is generally clear, but it is replete with 
awkward grammatical constructions. The inappropriate 
use (or absence) of definite and indefinite articles causes 
some confusion. 

The ordering of topics is good and the coverage is 
generally adequate. I believe that many readers will find 
this book a useful starting point for a more detailed study 
of perturbation methods. The references and the 
bibliography are complete enough so additional material 
can be located easily. 
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